Navigation

Аккумуляторы нового поколения создаются в Европе

В новом гигантском НПО Battery Industrialization Centre в британском г. Ковентри. Jason Alden / Bloomberg

Аккумуляторные батареи используются повсюду − в наших телефонах, ноутбуках и автомобилях, но недорогими и высокопроизводительными источниками энергии будущего они до сих пор не стали. Целый ряд европейских и швейцарских научно-производственных инициатив пытается сейчас нащупать пути к инновационному прорыву в этой перспективной области.

Этот контент был опубликован 17 сентября 2021 года - 07:00

Редактор русскоязычной версии Надежда Капоне.

«Благодаря применению аккумуляторов можно сократить на 30% углеродные выбросы в транспортном и энергетическом секторах, обеспечить электричеством дополнительно 600 млн человек, а также создать по всему миру 10 млн долговременных и экологически устойчивых рабочих мест», — сказано в недавно опубликованном ежегодном докладе Всемирного экономического форума в Давосе, штаб-квартира которого расположена в местечке Колоньи в пригороде Женевы. Пока доминирующую роль на рынке батарей и аккумуляторов играет Азия, причем более 90% их производства приходится на Китай, Ю. Корею и Японию. 

Но Европа намерена уже в скором времени сократить свое отставание. Европейский союз, уступая требования местных гигантов автомобилестроения, намерен скоро запустить массовое производство аккумуляторных батарей и ячеек (модульных элементов перезаряжаемых батарей), с тем чтобы положить конец технологической зависимости от зарубежных производителей. «В настоящее время мы просто пытаемся наверстать упущенное, но основная идея ЕС заключается в том, чтобы создать собственную производственно-инновационную базу для разработок в сфере производства аккумуляторов». 

Об этом мы беседуем с Корсин Баттальей (Corsin BattagliaВнешняя ссылка), экспертом Швейцарских федеральных лабораторий материаловедения и технологий (Eidgenössische Materialprüfungs- und Forschungsanstalt EmpaВнешняя ссылка). Швейцария не входит в Евросоюз, но принимает активное участие в европейских научных проектах по разработке аккумуляторов нового поколения. Четыре года назад с целью наращивания производственных мощностей и развития научно-исследовательского потенциала в данной сфере по инициативе Еврокомиссии был создан Европейский аккумуляторный альянс (European Battery Alliance). 

По данным НКО Transport & Environment, в рамках этой инициативы по всей Европе запланировано построить почти 40 заводов по производству батарей, так называемых «гигафабрик». Если все они в самом деле заработают, то к 2025 году старый свет сможет обеспечить себе долю мирового рынка аккумуляторов в 20%, что в годовом выражении составит торгово-промышленный оборот на ровне в 250 млрд евро или 270 млрд швейцарских франков. Одним из первых полностью европейских предприятий по производству экологически чистых аккумуляторов станет гигафабрика Northvolt EttВнешняя ссылка на севере Швеции в городе Шеллефтео. 

Площадь огромного завода по производству литий-ионных батарей достигает 500 000 квадратных метров или 70 футбольных полей. Фабрика Northvolt заявляет, что сможет выпускать батареи в количестве, необходимом для производства одного миллиона электромобилей в год. В настоящее время создание гигафабрик в Швейцарии не планируется, но страна и ее огромный научный потенциал тесно связаны с европейскими усилиями по разработке модели аккумулятора будущего. 

Огромный завод по производству литий-ионных аккумуляторов Northvolt Ett на севере Швеции будет занимать площадь более 500 000 квадратных метров или 70 футбольных полей. William Steel (Northvolt)

«Идет ли речь о сырье и материалах, о сборке аккумуляторных ячеек в единую батарею, о системах менеджмента, о переработке, утилизации или о системах хранения энергии − в Швейцарии есть большое число компаний, активно работающих в области производства аккумуляторов, а некоторые даже являются мировыми лидерами этой отрасли», — говорит Корсин Батталья.

Самовосстанавливающиеся батареи

На протяжении последних десятков лет доминирующей технологией хранения электроэнергии были литий-ионные батареи, и ожидается, что спрос на них вырастет в течение следующего десятилетия в десять раз. За последние 30 лет стоимость литиевых батарей упала почти на 100%, но наука в направлении совершенствования таких батарей практически никак не продвинулась. Для удовлетворения будущего спроса на такие аккумуляторы нам потребуются альтернативные технологии, обеспечивающие повышенные сроки службы их элементов и повышение общей емкости данных батарей. 

Именно этим и занимается European Battery 2030+, европейская инициатива в области исследований и разработок аккумуляторных батарей с общим бюджетом в 40 млн евро. Инициатива был запущена в прошлом 2020 году, в нее входят семь крупных исследовательских проектов, реализуемых при поддержке девяти европейских стран, включая Швейцарию. Один из проектов называется HIDDEN, и он ставит перед собой задачу увеличить средний срок службы литий-ионных аккумуляторов и их удельную энергоемкость по меньшей мере на 50%.

Корсин Батталья (справа) и исследователь Мари-Клод Бэй из Швейцарской федеральной лаборатории материаловедения и технологий (Empa), активно участвующей в европейских исследованиях параметров аккумуляторных батарей. Empa

«Реальную проблему для долговечности литий-металлических батарей представляет постепенный рост внутри них так называемых дендритов, крошечных жестких древовидных структур. Их игольчатые выступы называются усы, — объясняет Аксель Фюрст (Axel FuerstВнешняя ссылка), руководитель проекта HIDDEN при Бернской высшей школе прикладных наук (Berner FachhochschuleВнешняя ссылка). — Металлический литий имеет очень высокую энергетическую плотность и поэтому его можно использовать для производства все более легких и энергоемких батарей. Но дендриты растут очень быстро, из-за чего срок жизни таких аккумуляторов в среднем невелик», — говорит он.

Чтобы решить эту проблему, его группа занимается изучением процесса самовосстановления батареи. Они надеются, что специально разработанные термотропные (то есть образующиеся в результате нагревания твёрдого вещества и существующие в определённом интервале температур и давлений) жидкокристаллические ионные электролиты вместе с добавками и пьезоэлектрическим сепаратором, создающим электрическое поле, смогут остановить процесс роста коварных дендритов. Первую концептуальную модель такого аккумулятора тут надеются представить к 2023 году в надежде, что потом она получит широкое распространение и будет востребована на рынке.

Меньше редких металлов

Тем временем Корсин Батталья и его коллеги из Empa координируют европейский исследовательский проект SENSE, целью которого является создание так называемого литий-ионного аккумулятора «поколения 3b» с композитным анодом из кремния и графита и монокристаллическим катодом NMC, содержащим соединения никеля, марганца и кобальта. Целью исследования является повышение удельной энергоемкости батареи, что позволит увеличить дальность пробега транспортных средств, усовершенствовать технологии быстрой зарядки аккумуляторов и сократить объемы использования редких металлов. 

«Мы хотим сократить содержание кобальта и повысить содержание никеля», — говорит исследователь из Empa. Кобальт — один из самых дорогих материалов в батарее. Производители стараются сократить его использование, так как его поставки могут в будущем быть связанными со значительными политическими и социальными издержками и рисками. Напомним, что около 70% мировых объемов кобальта поступает на рынок из ДР Конго, а там работа шахтеров сопряжена с опасностью и вредными условиями труда. Основные же мощности по обогащению кобальтовой руды расположены в Китае. «Создание идеальной батареи — задача не из легких, зачастую требующая компромиссного подхода, от чего-то приходится отказываться, чтобы получить на выходе желаемый инженерный результат», — объясняет Корсин Батталья. 

Дело в том, что никель, обычно добавляемый в состав батареи, увеличивает мощность аккумулятора и он относительно дешев, но при этом никель приводит к быстрому износу батареи. Ученые в Швейцарии поэтому проводят сейчас эксперименты, добавляя в графитовый анод кремний. Этот материал представляет собой особый интерес для исследователей, поскольку он способен сохранять примерно в 10 раз больше энергии, чем графит. Но во время циклов заряда и разряда кремний подвержен расширению, что ведет к разрушению структуры анода и быстрой потере производительности. Эксперты Empa также занимаются сейчас разработкой новых датчиков быстрой зарядки для установки их на литий-ионные батареи, с тем чтобы аккумуляторы можно было заряжать быстрее и эффективнее. «Чтобы ускорить процесс зарядки нам нужно получить данные о локальной температуре и ресурсе аккумуляторной батареи, а также быстрее делать замеры внутри её ячеистых элементов», — говорит К. Батталья.

Твердотельные аккумуляторы

Еще одним претендентом на звание аккумулятора будущего является твердотельный аккумулятор с твердым электролитом, которым уже сейчас можно заменять вместо легковоспламеняющихся жидкие электролиты, используемые в обычных литий-ионных аккумуляторах. Такие батареи считаются более экономичными, безопасными, они требуют меньше сырья для их производства. Новейшие прототипы позволяют предположить, что твердотельные батареи смогут в будущем хранить на 80% больше энергии, чем нынешние литий-ионные аккумуляторы того же веса и объема.

Монтаж аккумулятрной батареи на фабрике Leclanche в городе Ивердон-ле-Бен на западе Швейцарии, май 2020 года. Компания Leclanche SA является ведущим мировым поставщиком высококачественных накопителей энергии на основе литий-ионных технологий. Keystone / Laurent Gillieron

Корсин Батталья говорит, что такие прорывные технологии сулят нам множество преимуществ, но воспользоваться ими в полном объеме пока не получается, соответствующие разработки пока не готовы покинуть пределы исследовательских лабораторий. По его словам, разработать твердотельную батарею с большой емкостью и длительным сроком службы оказалось не так-то просто. «Сделать такой аккумулятор с удвоенной энергоемкостью не проблема, но, скорее всего, после 20 циклов перезарядки такая батарея выйдет из строя», — объясняет он. Остается обычная батарея. Ее энергоемкость можно удвоить, заменив графит металлическим литием, но слишком быстрая зарядка батареи с большим содержанием лития приводит опять же к образованию дендритов, которые срок службы батареи резко сокращают.

Хотя батареи можно увеличить вдвое, заменив графит (материал анода литий-ионной батареи) на металлический литий, но слишком быстрая зарядка литий-металлической батареи вызовет образование дендритов, сокращающих срок ее службы. А ведь сумей твердотельные литиевые батареи решить все свои проблемы, с их помощью технологии, лежащие в основе мобильных источников энергии, смогли бы сделать огромный шаг вперед в плане и энергоемкости, и долговечности. В рамках проекта SOLIDIFY, направленного на разработку производственных процессов для так называемых аккумуляторов «поколения 4b», твердотельных аккумуляторов, которые могут быть готовы к выходу на рынок через десять лет, швейцарская структура Empa уже плотно сотрудничает с десятком своих европейских партнеров.

Эффективные системы хранения энергии

В ближайшие десятилетия значительный рост степени востребованности также ожидает стационарные системы хранения энергии. Литий-ионные аккумуляторы и батареи с монокристаллическим катодом NMC, содержащим соединения никеля, марганца и кобальта, уже используются для хранения солнечной и ветровой энергии, получаемой в условиях домашних хозяйств. Ученые сейчас занимаются поиском альтернатив таким литий-ионным батареям, пытаясь усовершенствовать, например цинковые, натрий-ионные и ванадиевые аккумуляторы, которые, как оказалось, хорошо подходят для стационарного хранения энергии. 

Однако для того, чтобы удовлетворить растущий спрос на такие хранилища и обеспечить их ценовую конкурентоспособность, необходимо еще приложить значительные усилия. Швейцарское ведомство Empa является одним из двенадцати партнеров, которые как раз и занимаются активизацией таких усилий в рамках европейского аккумуляторного проекта SOLSTICE, в котором также участвуют швейцарские фирмы FZSONICK и Quantis. Их цель заключается в разработке никель-солевых термальных аккумуляторных батарей на основе жидких натрия и цинка, которые работают только при высоких температурах и которые можно использовать для стационарного хранения энергии.

По словам К. Баттальи, по мере быстрого увеличения в ближайшие десятилетия спроса на стационарные накопительные системы и в связи с ростом числа электромобилей на дорогах спрос на инновационные аккумуляторы также будет возрастать, а это значит, что многие швейцарские фирмы, помимо уже имеющихся игроков, также смогут получить свою долю прибыли. «Ко мне часто обращаются швейцарские компании, которые не связаны напрямую с аккумуляторной отраслью, но, имея за плечами знания и опыт в сфере производства и интеграции (разных производственных процессов в единую систему), они все чаще рассматривают эту отрасль в качестве направления на рынке, перспективного и для них тоже».

Сотрудничество компаний Lonza и Natron Energy

Еще один крупный проект в области технологий хранения энергии реализуется сейчас в Швейцарии в рамках сотрудничества между биохимической компанией Lonza, расположенной в кантоне Вале, и американской компанией Natron Energy. В апреле 2021 года они объявили о достижении стратегического соглашения с целью поставки порошка берлинской лазури (синий пигмент/железисто-синеродистая соль окиси железа), необходимого для производства натриево-ионных аккумуляторов.

Один из бизнесов компании Lonza, компания Lonza Specialty Ingredients, будет производить порошок берлинской лазури для Natron Energy на своем предприятии в городе Фисп (Visp, кантон Вале). С конца следующего 2022 года этот пигмент будут использовать на производстве аккумуляторных электродов на новом предприятии этой компании, рассчитанном на примерно 100 сотрудников и расположенном недалеко от г. Сьон. Оттуда электроды швейцарского производства будут экспортироваться в США для использования в накопителях энергии от компании Natron.

В соответствии со стандартами JTI

В соответствии со стандартами JTI

Показать больше: Сертификат по нормам JTI для портала SWI swissinfo.ch

Сортировать по

Изменить пароль

Вы действительно хотите удалить Ваш аккаунт?

Ваша подписка не может быть сохранена. Пожалуйста, попробуйте еще раз.
Почти все закончено, еще немного… Вам необходимо подтвердить Ваш электронный адрес Для завершения процесса подписки, пожалуйста, пройдите по адресу, который мы Вам выслали по электронной почте

Читайте наши самые интересные статьи недели.

Подпишитесь, чтобы получать наши лучшие статьи по электронной почте.

Политика конфиденциальности SRG предоставляет дополнительную информацию о том, как обрабатываются ваши данные.